Terraforming Candidates in Saturn’s Orbit

Image Via NASA / JPL

What would terraforming look like for candidates in Saturn’s orbit?

Straight from the start of this piece let’s be clear. We’re not talking about all 62 of the confirmed “moons” that are in orbit around Saturn. Instead, we’ll be focusing on the Saturn’s larger candidates that are found beyond the E-Ring. Namely; Tethys, Dione, Rhea, Titan and Iapetus.

Image via NASA / JPL

The Composition of Saturn’s Terraforming Candidates

Image via NASA / Goddard

The moons of Saturn are relatively similar in composition. They are all made of ice (water) and rock, and have similar crust, mantle and cores. Of those listed above, Titan is by far the largest. In fact, Titan is so much larger it is larger than all of the others combined. 

When we consider suitability, the moons begin to differentiate themselves. Their sizes, position, gravitational pulls, atmosphere (or lack thereof) and abundance of water, all create variable propositions. 

The Terraforming Process

When it comes to terraforming the moons of Saturn the process is relatively similar to that of the Galilean moons of Jupiter. A sustainable atmosphere is the first item on the agenda. This would be achieved through a great deal of heat, either through asteroid impact, thermonuclear action or orbital mirrors. 

Without the radiation belt of Jupiter, the Saturn candidates would require atmospheres to undergo a process of radiolysis to create the Nitrogen-Oxygen rich environment that would sustain life. Another interesting method would be to introduce certain bacteria that would process the moons’ naturally occurring ammonia and secrete it as nitrates which could, in turn, be converted into nitrogen gas. 

Paraterraforming, who needs a surface anyway?

Image via NASA / JPL/STScI

A far more radical process would be to implement a process of paraterraforming. This process creates what is referred to as a “shell world”. The entire body is surrounded by a type of floating roof which would enclose the surface and sustain life underneath. 

Underneath the roof, the Cronian moons could slowly raise their temperatures, develop water-vapor based atmospheres and, eventually, life (in the form of bacteria) could be introduced. Whilst this is a truly ambitious proposal, it does mean that the conditions could be far more easily controlled and maintained versus the extreme conditions of the unprotected surfaces.

Titan, the special case

Image via NASA / JPL/University of Arizona

Titan, however, is a unique case. The largest of the Cronians is special thanks to its atmosphere. It is the only large moon that scientists believe to have its own atmosphere apart from Earth’s. Furthermore, the atmospheric pressure is relatively similar to Earth’s at only 1.45 times that of Earth’s. Scientists have hypothesized that the massive sub-surface oceans could sustain microbial and extremophile life, but NASA has gone on record stating that they are definitely only “hypothetical”. 

For these reasons, and the abundance of necessary elements within its composition, Titan makes for the best terraforming candidates of the Cronians. 

Is it worth terraforming Saturn’s moons?

As always with terraforming, we’re faced with the question as to whether it is worth the time, effort and resources to carry out the process. The Cronian moons are attractive, in the most part, due to their resources.  There are, in no uncertain terms, enough water ice, organic molecules and resources found inside the Saturn system to keep human life in supply indefinitely.

That said, would humans look to terraform these moons before larger and closer planets? Most likely, no. But they are potential candidates, and that in itself is exciting.

Feature Image via NASA / JPL-Caltech/Space Science Institute

Want to try terraforming Saturn’s moons for yourself? Download TerraGenesis today!

Terraforming Candidates: Dwarf Planet Edition

Which Dwarf Planets Are Good Terraforming Candidates?

Image Via NASA / ESA/ATG medialab

The dwarf planets of our Solar System present a tricky set of problems for terraforming. Whilst there are plenty of them to pick from, they wouldn’t be straightforward options. Firstly, they are all incredibly large distances from the Sun and therefore heat, or the lack of it, would present a major obstacle to life. Furthermore, each of these candidates have no atmosphere at all meaning artificial alternatives will need to be sought.

We can take it as read that for life to exist on these dwarf planets they would need a huge influx of oxygen to become sustainable. No easy feat but a necessary one.

Terraforming Pluto

Image via NASA / Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Oh Pluto, our dear old friend who was rudely ousted from our collection of planets in the solar system by the International Astronomical Union not too many years ago. Even a display of its love for us, with its heart shaped land mass seen by New Horizons, wasn’t enough to bring its status of planet back.

Pluto, whilst lacking atmosphere, does have both nitrogen and methane trapped in its ice. One potential terraforming solution is to melt then evaporate this ice to create an atmosphere that would then leave a rocky surface. The main issue with this, and the other dwarf planets, is that this atmosphere would simply move on from the planet thanks to the lack of gravity and magnetic fields.

Terraforming Charon and Ceres

Image via NASA / Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Interestingly, Charon and Ceres present somewhat easier terraforming prospects than Pluto. Charon and Ceres, rather than methane and nitrogen, both have an abundance of water-based ice which could be melted to create oceans which could then support floating continents. The continents could then be covered with plant life to help support the atmosphere and create a readily available supply of oxygen. Once again, the atmosphere would need to be artificially enclosed in order to prevent it escaping deep into space.

Terraforming Eris

Image via NASA / JPL-Caltech

Eris’ makeup presents something of a combination of the two examples above. Whilst it would end up becoming a water world after the ice has been melted, much of the ice is methane based which would create a somewhat toxic atmosphere. External supplies of oxygen would need to be delivered.

Issues with Terraforming Dwarf Planets

When working on the terraforming of dwarf planets, humans will face a number of interesting challenges which other planets might not present. Firstly, we’ve discussed above the need to enclose an atmosphere to prevent it escaping. Whilst, theoretically, this is possible using a huge dome like enclosure it creates an issue when one goes to leave the planet. To maintain atmospheric integrity, a simple gate wouldn’t be possible. Instead, it’s more likely huge airlocks would exist at each pole.

Avoiding complete catastrophe thanks to asteroid impacts is another issue. Firstly, because an asteroid style impact would destroy any dome in place but also because it would be very difficult to predict potential strikes. The orbits of these dwarf planets are so huge that they regularly pass through deadly radiation fields, are open to solar winds and wandering asteroids.

 All in all, when it comes to terraforming for human life, the dwarf planets don’t present likely options. Interesting in theory, but unlikely in practice.

Want to try terraforming these Dwarf planets for yourself? Download TerraGenesis today!

Terraforming Candidates in Jupiter’s Orbit

Image via  NASA / JPL

What would terraforming look like for candidates in Jupiter’s orbit?

Terraforming the moons in Jupiter’s orbit is a topic that has captured both scientists and writer’s imaginations alike. Since the Arthur C Clarke novel 2010: Odyssey Two the moons orbiting Jupiter have been seen as terraforming candidates. Is this feasible or is it truly only the stuff of science fiction?

Terraforming Ganymede

Image via NASA / JPL

The largest of not only Jupiter’s moons but also the largest moon in the Solar System. No wonder that Ganymede is a popular terraforming prospect. It’s roughly the size of Mercury but with a lesser mass, plus scientists believe that there may be liquid water held beneath the surface. This makes for a relatively straightforward terraforming process, with the introduction of greenhouse gases (from nearby Io) and the use of the strong magnetosphere which should sustain an atmosphere.

That said, the size of Ganymede just might not be large enough to have the gravitational pull to keep that atmosphere in place. Plus, in its current rotation a day lasts for 3.5 days on Earth. In order to make life sustainable that would need to be decreased. A challenging prospect but one specked with possibilities.

Terraforming Europa

Image via NASA / JPL

The current icy gem of Jupiter’s moons. Whilst, on the surface of it, Europa looks like a good prospect for terraforming (plentiful ice, decent relative size) there are some major headaches that come with the process.

Europa is a hugely powerful radiation belt from Jupiter which makes sustaining life on it very impractical. One option to counter this could be building huge radiation shields, but a more likely outcome would be to create a magnetic field around the moon that would deflect the harmful radiation. Furthermore, similar to Ganymede, the rotation would need to be sped up from 1.78 Earth days to 24 hours. This could be done through asteroid impact, which would also benefit the terraforming process by introducing extra heat.

As mentioned above, the moon has a huge abundance of ice, which when melted after a new atmosphere is introduced, would essentially flood the majority of the surface. This means humans would have to build floating cities or form continents from imported material. 

Terraforming Io

Image via  NASA / JPL/University of Arizona

Probably the hardest and most inhospitable candidate of Jupiter’s moons. A whole terraforming process would be incredibly difficult but smaller scale colonies present a more realistic chance. Io resides in the radiation belt, similar to Europa, so would need either shields or a magnetosphere put in place.

The payoff is the vast geothermal energy that can be harvested from under Io’s surface. That said, the volatile nature of the moon makes it a dangerous proposition. The geothermal energy would certainly be attractive this far from the Sun, especially because solar energy would be far less efficient. 

Overall, Io doesn’t win the prize for being the most attractive, straightforward or useful terraforming candidate of Jupiter’s moons.

Terraforming Callisto

Image via NASA / JPL

The last of Jupiter’s moons and the second largest of the Galileans, Callisto is roughly 99% the size of Mercury but with a substantially smaller mass. Callisto makes for one of the most attractive propositions when it comes to terraforming. Much like some other candidates there is an abundance of water (ice) on the surface but, unlike the others, it is at a far greater distance from Jupiter. This means that the radiation belt, that affects the others, presents a far smaller problem. 

As with all these candidates, due to the vast distance between them and the Sun, a process of heating would need to be applied to Callisto in order to melt the surface ice and also sustain life on the surface with a stable atmosphere.

Are Any of the Candidates in Jupiter’s Orbit Good for Terraforming?

Overall? Probably not. Realistically, they would take up a vast amount of time, effort and resources to even get to the most basic levels of life sustaining terraforming. Instead, chances are we would use these moons as resource bases and harvest their natural materials during the terraforming of other, more suitable candidates. 

Feature Image via NASA / JPL/University of Arizona

Want to try terraforming Uranus’ moons for yourself? Download TerraGenesis today!

Terraforming Candidates in Uranus’ Orbit

What would terraforming look like for candidates in Uranus’ orbit?

Graphic of Uranus planet
Image via  NASA / JPL-Caltech

Journeying to the edge of our Solar System isn’t going to be taken lightly, so could we lighten these epic journeys by finding some terraforming candidates in Uranus’ orbit? By creating habitable worlds near the edge of our Solar System we’d be able to launch into far deeper realms of space, enable vital refueling and restocking of expeditions and ease the strain on other colonized worlds. 

But is this even remotely possible? Can we even consider terraforming any of the Uranian moons? Well, there are 6 potential candidates orbiting Uranus; Miranda, Ariel, Umbriel, Titania, and Oberon. Plus, Uranus has Puck. Puck doesn’t get included in the first list because of its irregular shape.

Terraforming Miranda

Photo of Miranda Moon - Uranus
Image via NASA / JPL-Caltech

Starting at the smaller end of the moons by diameter (not including Puck), we have Miranda. Miranda holds claim of being one of the smallest spherical, orbiting objects in our Solar System, second only to Mimas (the death star lookalike moon of Saturn). Miranda doesn’t win any immediate prizes for terraforming candidacy thanks to its tiny size relative to Earth (at only 0.81%) but that doesn’t exclude it from use completely. 

Rather than becoming a wholly colonized body, humans could look to Miranda for farming or resource stocking. Thanks to its close proximity to Uranus itself, should we create gas farming stations in the atmosphere of the planet, Miranda could be used as resupply or rest station.

Terraforming Ariel

Photo of Ariel Moon - Uranus
Image via NASA / JPL

Ariel steps things up considerably in size (relatively) and is well over twice the size of the smallest moon, Miranda. But, that said, it is still only 2.64% the size of Earth with a diameter of a mere 719 miles. Once again, the small size likely excludes it from a permanent terraforming project but, similar to Miranda, Ariel does have a strong resource base. The crust and mantle of the moon has healthy reserves of water (ice) and natural gases which could be mined. Long term terraforming for Ariel? Likely not.

Terraforming Umbriel

Photo of Umbriel Moon - Uranus
Image via NASA / JPL

Umbriel presents a serious challenge. When compared to the nearby candidates in the Uranian system, it might not be a first choice, but then where’s the fun in taking the easy route? Its size isn’t one of the largest in the area, it has an unhelpful composition in terms of chemicals and makeup, plus it is far less dense. Umbriel, I’m afraid you’re not about to be our first choice. One for the hardcore terraformers.

Terraforming Titania

Photo of Titania Moon
Image via NASA / JPL

Now we’re talking. Titania holds the prize for being the largest of the moons in orbit around Uranus, but still is nothing in comparison to Earth. That said, where Titania shines is the distance that it stands from Uranus itself whilst holding orbit. This might not sound like a big selling point, but it means that it faces considerably less radiation damage from its mother planet, making it far more habitable. Titania would likely act as something of a training camp to allow humans to acclimatize to life this far from the sun before heading deeper into space. 

Terraforming Oberon

Photo of Oberon Moon
Image via NASA / JPL

Similar to Titania but smaller in size, Oberon presents itself as a better potential candidate for terraforming. It is composed of ice and rock which lends itself to terraforming practically and provides a potential water source. That said, at this distance from the sun combined with the fact that it is a the very edge of a reasonable orbit from Uranus. Oberon would require a great deal of heating and introduction of greenhouse gases to bring it into the realm of terraforming.

But what about Puck, we hear you cry.

Puck is generally referred to as “approximately spherical” which isn’t ideal for terraforming as it would be wildly unpredictable in both orbit and rotation. It is as close as it gets to Uranus which means a huge amount of radiation, plus it is completely pocketed with impact craters. Impact craters means impacts, and going through the efforts of terraforming for it to be wiped out shortly after isn’t a positive indicator.

So, no Puck, you’re not in our terraforming candidates in Uranus’ orbit. 

Want to try terraforming Uranus’ moons for yourself? Download TerraGenesis today!

The Science of TerraGenesis Podcast: Christmas Magic (Bonus Episode)

LISTEN TO THE PODCAST HERE:

Spotify | iTunes | Stitcher

Hey, folks. Today I’d like to share a post I made on the TerraGenesis Facebook page in December of 2016, just a few months after TerraGenesis was first released. I was sitting in a cabin on the North Island of New Zealand with my wife and my mom, enjoying the disconcertingly warm weather and dreaming of where this journey might take us in the years to come. Some of our oldest players may have read this post already on the Facebook page back in the day, but given the fact that the community was much smaller back then, and the fact that mathematics NEVER goes out of style, I thought I’d share it again. Whether or not you celebrate Christmas or believe in Santa, I hope you’re having a wonderful day, and as usual, happy terraforming!

So, I don’t think it’s going to come as a great galloping shock to hear that the guy who single-handedly designed and created a science-based planet simulator app is a bit of a math nerd. But what you may not know is that I also happen to be a HUGE Christmas nerd. I look forward to it all year, and it holds a very special place in my heart.

So, in honor of one of my favorite days of the year, let’s do a bit of holiday number crunching!

Finding Santa

In December of 1990, SPY Magazine published an article written by Bruce Handy and Joel Potischman called “Santa Math.” In it they calculated just how fast Santa Claus would have to travel to visit every child’s home on Earth in a single day. Their conclusion was a staggering 650 miles per second. In TerraGenesis we use metric, so that’s 1,046 kilometers per second. 

But of course, this is TerraGenesis, and we don’t care about boring-old Earth. We want to hear about Mars.

The Math

On average Earth and Mars are about 225 million km apart, so at that rate Santa would need to fly at his top Christmas-speed for 215,105 seconds (or almost 60 hours) just to get to Mars. Venus would be 45 hours away, the Moon would be just 6 minutes away, and the moons of Uranus would be just over a month of hard flying for Rudolph and the gang.

Of course, a Martian day isn’t the same length as an Earth day. It’s close, but it’s about 40 minutes longer, or about 3% longer than an Earth day. That means Santa has more time to work once he gets there, albeit not much: instead of going 1,046 km/s he’d only have to go 1,015 km/s. I suppose every little bit helps.

Except, Mars is also a lot smaller than Earth: surface area 145 million square kilometers, as opposed to Earth’s 510 million. That’s only 28.4% the amount of ground to cover, meaning that between the smaller surface and the longer day, Santa would only have to go about 27.5% as fast to get the job done on Mars (about 288 km/s), for a similar population.

Santa Math

But then, why assume a similar population? The original “Santa Math” article assumed 91.8 million households eligible for a visit from Santa. In 2015 the average American household included 2.54 people. What’s the population of your Mars in TerraGenesis, divided into households of 2-3 people, relative to that number on Earth? Use this formula to figure it out:

[PopulationRatio] = ( [PlanetPopulation] / 2.54 ) / 92,000,000

Then you can figure out how fast Santa would have to go on your particular Mars using this formula…

[SantaSpeedKm/s] = 288 * [PopulationRatio]

Share your Santa speeds on Facebook and Twitter and see how they compare! And for bonus points and super-nerd cred, look up the surface area of the world you’re currently playing on and the length of its day, and use those in your calculations. Pro-tip: a day on Venus is longer than a year on Venus, so Santa has all the time in the world to glide through those sulfuric acid clouds.

Anyway, I’m just saying, math is cool. And if you happen to still be in school, you have my permission to tell your math teacher that the creator of the greatest app ever says that if they’re not teaching class by calculating the trajectory of reindeer across semi-spherical objects in space, they’re doing their job wrong.

In the meantime, I’ll leave you with a quote from the once-great Billy Mack: Christmas is the time to be with the people you love. Well corny as it may sound, I love all you folks. It’s no exaggeration to say that this community has changed my life, and I wake up grateful every day to be able to do this, and talk to you, for a living.

So whether you celebrate Christmas in your own home or not, just know that you’re getting good wishes and holiday cheer sent to you direct from Edgeworks Entertainment. I know some people get worked up about the whole “Happy Holidays” vs “Merry Christmas” thing, but to me a big part of the joy of this season is that almost every culture in the world has sensed the beauty of this season, and everyone has something to celebrate. So to everyone out there playing TerraGenesis all across the Earth and beyond: Season’s Greetings, Happy Hanukkah, Merry Midwinter, Glückliches Yule, Happy Kwanzaa, Feliz Posadas, Happy New Year, Jolly Boxing Day, Joyous Soyal, and a very, very Merry Christmas to you all.

That’s it for this bonus episode of The Science of TerraGenesis. 

Be sure to subscribe for more episodes, and in the meantime you can follow us on Facebook, Twitter, Instagram, Reddit, Discord, YouTube, everywhere really. You can also check us out at EdgeworksEntertainment.com and TerraGenesisGame.com, and don’t forget to leave a review for the podcast, it really does help!

And if you haven’t played it yet, be sure to check out TerraGenesis, it’s a free download on iOS or Android, and coming soon to Windows.

Oh, and one more thing: take a moment to check in on your worlds on Christmas Day. You might find a few unusual things waiting for you…

Listen to the Podcast on Youtube Here

Did ‘No Man’s Sky’ Redeem Itself?

No Man's Sky
When I first got wind of “No Man’s Sky” just weeks before its release in 2016, I jumped onto the caboose of that hype train and rode those glorious tracks into 18 quintillion procedurally generated sunsets.

No Man's Sky Rings
via Twitter / TerraGenesis

On release day, my coworkers picked up the highly anticipated title and decided to stream it for 24 hours straight — that’s how excited we all were for it — but by hour 2 we’d already lost interest; by hour 4 were so sick of the game we couldn’t bear to look at it anymore.

We weren’t alone — that hype train crashed and burned horrendously, but unlike a beautiful trainwreck, no one wanted to stick around and watch it. Steam had to issue countless refunds, and the game now holds the distinction of having one of the most disastrous launches in history.

No Man's Sky
via Twitter / Linalyx_

What happened?

We could place blame on the unfulfilled promises that lead to the overwhelming hype, such as lack of multiplayer, but a game doesn’t need such a feature to succeed if it’s good on its own. And while “No Man’s Sky”, on paper, had everything it needed to appeal to just about anybody — unique mechanic, beautiful graphics, and, of course, zooming through space discovering things — it was just missing… something.

No Man's Sky NEXT
via Twitter / Berduu

But what?

As I watched the title struggle for two years, I promised myself that I’d give it another go when it released a multiplayer option — out of principle, of course. So when “No Man’s Sky” NEXT came out, I finally caved and bought a copy of my own, jumping back on the hype train’s newfound tracks once again. Surely, adding multiplayer and the other promised features will fix this game, right? All rights have been wronged, and we can all play in peace now, right? Right?

no man's sky
via Twitter / PlayStation

Hmm.

Booting the game up two years later, I was still met with some same critiques along with a few new ones. I’m still a random explorer with a damaged ship and space amnesia, but now I have mini-objectives that, if not fulfilled, will result in death. Each mini-objective is barely explained, and understanding the controls seems to be a privilege, not a right. Nevertheless, I persisted, and managed to get off the first planet…

No Man's Sky
via Twitter / Berduu

…only to immediately land on a nearby moon and start another tutorial.

In a game that boasts endless exploration in the vastness of space, it’s frustrating to focus on something comparatively insignificant as my character not dying. Additionally, while discovering flora and fauna has to be my absolute favorite aspect of the game, there doesn’t seem to be much of a purpose to it besides gaining some credits. Am I furthering in-game knowledge of a certain species, or is this just for shits and giggles? And what’s up with the mining, AKA 300% of the game (with the remainder being not dying of course)?

No Man's Sky
via Twitter / RonanWills

Giving up on Story Mode, I boot up a new game on Creative instead. As I take a few snapshots of the nature that surrounds me and feed a few organisms, I’m reminded why I lost interest so quickly. I wanted to explore this procedurally generated universe, but with more purpose. I wanted to chart the stars with other players and look back on all our accomplishments on a shared map as we populated it with new worlds. I wanted to be a passive observer on some planets but actively settle others. I wanted to find flourishing alien civilizations mixed in with the lesser-evolved life forms.

No Man's Sky
via FaceBook / Heather E. Johnson Yu

Maybe that was too much to ask, but when a game promises something like infinite worlds, it’s easy to believe that the sky’s the limit when it comes to adding features.

Perhaps it’s this selling point that ends becomes one of its weaknesses. 18 quintillion planets sounds cool, but is it necessary? I keep hoping to run into another player’s base or some bustling city just by happenstance, but the universe is too impossibly big for that to be statistically plausible.

No Man's Sky Base
via Twitter / Linalyx_

Then again, there is a beauty to the overwhelming sense of loneliness this provides. Through all the ferrite dust mined, the sentinels avoided, the flora discovered, the fauna named, the bases built and the worlds visited, I’m obstinate in my goal to not only find a connection, but find meaning. What is the purpose of building a glorious home base, only to constantly travel many light years away from it? Why am I naming all of these animals if no one else is around to take value from my discoveries? Why bother pioneering through each planet if I can’t even map them? And why is my motivation to continue to eke out an existence in this infinite universe with no clear direction?

No Man's Sky
via Twitter / Linalyx_

Wait.

Why is this game exactly like life? Why are we here, what is our purpose, and what keeps us going as we climb over the next hill or jet off to the next world?

As I feed carbon to a strange creature and it starts to follow me, purring, I sit down and survey my base. I take a snapshot as the now friendly alien dances around me, seemingly without a care.

No Man's Sky
via FaceBook / Heather E. Johnson Yu

Playing with the lighting controls, I settle on a welcome stillness in the air, and as the sun rises over the horizon, I’m met with the beauty that can only come from a calm morning, a planet yet to awaken after a restful night. I take a photo to immortalize this feeling of “being in the now” and post it to social media, although I know no one will feel the joy I suddenly feel from this moment.

It seems silly, but in that one fragment of time, when everything was still and I could pause to take the beauty in, I was reminded of what I felt was initially missing.

No Man's Sky
via Twitter / RPGSite

Soul.

“No Man’s Sky” spoke to me in a way that only a fresh dawn can, and it healed me, if even for a little while. It reminded me to take in the beauty that is all around us and appreciate the small things that the universe throws our way. We may be lost in the desolate vastness of space, searching for meaning, but we’re always given casual prompts to stop and reflect on the beauty that is all around us.

No Man's Sky
via Twitter / lizaledwards

So, to Sean Murray and the team at Hello Games, a congratulations is in order — thank you for making such a beautiful game (but let’s work on that shared in-game map, eh?).

Feature Image via Instagram / nomansjungle