Terraforming Candidates in the Inner Solar System

What would terraforming look like for these inner solar system candidates?

Terraforming Mars is certainly the topic on the tip of space enthusiasts’ tongues, but are there other worlds humans can call home? The process of terraforming is explored within TerraGenesis with an increasingly difficult set of challenges. Each celestial body comes with a unique set of problems to overcome and wildly different characteristics. Let’s shed a little light on some of our nearby neighbors and see how tackling terraforming would be on each celestial body!

Terraforming Mercury

Image of Mercury - Terraforming

Let’s get straight to the point. Mercury is hot, seriously hot. Surface temperatures regularly reach 700K or 427°C. That’s not all. Due to the lack of a real atmosphere, the side of Mercury that isn’t facing the sun plunges to temperatures as low as -173°C. This makes for an interesting set of challenges when it comes to terraforming.

Sounds fairly impossible to have a regular colony on Mercury, but there’s one more set of facts that might make it possible. The north pole on Mercury is permanently shaded thanks to the low orbital period and the slow rotation of the planet. This would make it the best candidate for terraforming, maybe not an ideal one, but a potentially possible one.

The make up of Mercury seems similar to the Moon, but Mercury has been found to have an expansive core and pockets of ice found at the north and possible south poles. Whilst it might not be our first choice, the geothermal heat that can be extracted from below the surface and the potential water sources make it an interesting candidate.

Terraforming Venus

Image of Venus - Terraforming

Venus has a size and composition that is very similar to Earth, making it an (on the surface) ideal candidate for terraforming. Furthermore, its orbit is in what is referred to as the Goldilocks Zone, the area of our solar system that is easily habitable. Sounds like an ideal candidate? Well, of course, there are some challenges to overcome.

The atmosphere isn’t exactly welcoming. It’s well over 90 times thicker than Earth’s and the air is packed full of carbon dioxide and sulfuric acid. The terraforming process, to counter this acidity, would be extensive. A key process within the terraforming process would be carbon sequestration or, as suggested by Carl Sagan back in 1961, introducing a genetically engineered bacteria that would transform the atmospheric carbon into organic molecules. That said, the sulfuric acid would make this difficult.

Looking towards an external solution, solar shades would be used to deflect the suns energy away from the surface and reduce temperatures. This, in turn, would reduce the greenhouse gases that have exploded throughout the atmosphere of Venus. This is all aimed at terraforming the surface. A further theory would be to ignore the surface altogether and develop entire cities that would float above the clouds of Venus thanks to the intensely dense atmosphere. These cities would then, in turn, act as solar shades for the surface.

Terraforming the Moon

Image of the Moon - Terraforming

When most people think of a colony leaving Earth, most will think of our closest body, the Moon. Since the dawn of the Space Age, mankind has been dreaming and theorizing the creation of a human settlement on the Moon. But domelike colonies are a long way from terraforming the entire body.

The challenges are similar to those outlined with Mercury. Little to no atmosphere and small or trace amounts of the key elements. The introduction of nitrogen, hydrogen and carbon has been hypothesized in various forms, but one popular way is to introduce them through crash landings. Crash landings of comets that is. The aim would be to introduce the elements whilst also creating more momentum and speeding up the lunar rotation. If we could speed the rotation to 24 hours then we would be in a far better position to adapt to life on the Moon.

As mentioned above with Venus, partial terraforming could take place in the Shackleton Crater. The reason for this particular area is that we have already found evidence of water (as ice) here. Starting small, the terraforming would focus on solar mirrors and dome like habitats which could create microclimates capable of sustaining life.

Terraforming MarsImage of Mars - Terraforming

Well, this is the one that everyone is looking forward to. NASA says that it’s impossible, Elon Musk disagrees. And when Elon disagrees it usually results in something incredible…

Mars remains a poster child for terraforming thanks to the relative proximity to Earth and the fact that scientists believe its atmosphere was once similar to Earth’s. Not to mention, we’re now almost certain that Mars has water supplies beneath its surface. Plus, the diurnal and seasonal cycle is remarkably close to Earth’s, where a day is only 40 minutes longer than on Earth.

When it comes to terraforming, the first step would be to work on the atmosphere, namely thickening it up to be able to maintain air pressure. Currently, at sea level, Mars’ atmosphere is roughly only holding 1% of Earth’s air pressure. Alongside the thickening of the atmosphere, Mars would need to be warmed to a temperature suitable for human life.

Mining volatile elements such as methane and ammonia, which could be mined from the icy moons in our solar system, and then impacting them into Mars could lead to the creation of an atmosphere. But that atmosphere would be CO² heavy, great for warming, not so great for breathing. The conversion to a 70/30 nitrogen/oxygen atmosphere could take centuries but a method suggested would be the introduction of photosynthetic life to complete the process naturally.

Terraforming the Inner Solar System

These are some of our options, and likely the best candidates when it comes to terraforming in the relatively near future. But why stop there? Expansion into the outer solar system and beyond can also be considered. A question that will inevitably will be; why are we even thinking about terraforming? What’s the point? Maybe it’s as simple as, because we can! But it could easily, and quickly, become “because we have to.”

Want to try terraforming the Inner Solar System for yourself? Download TerraGenesis today!

Terraforming Candidates in Saturn’s Orbit

Image Via NASA / JPL

What would terraforming look like for candidates in Saturn’s orbit?

Straight from the start of this piece let’s be clear. We’re not talking about all 62 of the confirmed “moons” that are in orbit around Saturn. Instead, we’ll be focusing on the Saturn’s larger candidates that are found beyond the E-Ring. Namely; Tethys, Dione, Rhea, Titan and Iapetus.

Image via NASA / JPL

The Composition of Saturn’s Terraforming Candidates

Image via NASA / Goddard

The moons of Saturn are relatively similar in composition. They are all made of ice (water) and rock, and have similar crust, mantle and cores. Of those listed above, Titan is by far the largest. In fact, Titan is so much larger it is larger than all of the others combined. 

When we consider suitability, the moons begin to differentiate themselves. Their sizes, position, gravitational pulls, atmosphere (or lack thereof) and abundance of water, all create variable propositions. 

The Terraforming Process

When it comes to terraforming the moons of Saturn the process is relatively similar to that of the Galilean moons of Jupiter. A sustainable atmosphere is the first item on the agenda. This would be achieved through a great deal of heat, either through asteroid impact, thermonuclear action or orbital mirrors. 

Without the radiation belt of Jupiter, the Saturn candidates would require atmospheres to undergo a process of radiolysis to create the Nitrogen-Oxygen rich environment that would sustain life. Another interesting method would be to introduce certain bacteria that would process the moons’ naturally occurring ammonia and secrete it as nitrates which could, in turn, be converted into nitrogen gas. 

Paraterraforming, who needs a surface anyway?

Image via NASA / JPL/STScI

A far more radical process would be to implement a process of paraterraforming. This process creates what is referred to as a “shell world”. The entire body is surrounded by a type of floating roof which would enclose the surface and sustain life underneath. 

Underneath the roof, the Cronian moons could slowly raise their temperatures, develop water-vapor based atmospheres and, eventually, life (in the form of bacteria) could be introduced. Whilst this is a truly ambitious proposal, it does mean that the conditions could be far more easily controlled and maintained versus the extreme conditions of the unprotected surfaces.

Titan, the special case

Image via NASA / JPL/University of Arizona

Titan, however, is a unique case. The largest of the Cronians is special thanks to its atmosphere. It is the only large moon that scientists believe to have its own atmosphere apart from Earth’s. Furthermore, the atmospheric pressure is relatively similar to Earth’s at only 1.45 times that of Earth’s. Scientists have hypothesized that the massive sub-surface oceans could sustain microbial and extremophile life, but NASA has gone on record stating that they are definitely only “hypothetical”. 

For these reasons, and the abundance of necessary elements within its composition, Titan makes for the best terraforming candidates of the Cronians. 

Is it worth terraforming Saturn’s moons?

As always with terraforming, we’re faced with the question as to whether it is worth the time, effort and resources to carry out the process. The Cronian moons are attractive, in the most part, due to their resources.  There are, in no uncertain terms, enough water ice, organic molecules and resources found inside the Saturn system to keep human life in supply indefinitely.

That said, would humans look to terraform these moons before larger and closer planets? Most likely, no. But they are potential candidates, and that in itself is exciting.

Feature Image via NASA / JPL-Caltech/Space Science Institute

Want to try terraforming Saturn’s moons for yourself? Download TerraGenesis today!

Terraforming Candidates: Dwarf Planet Edition

Which Dwarf Planets Are Good Terraforming Candidates?

Image Via NASA / ESA/ATG medialab

The dwarf planets of our Solar System present a tricky set of problems for terraforming. Whilst there are plenty of them to pick from, they wouldn’t be straightforward options. Firstly, they are all incredibly large distances from the Sun and therefore heat, or the lack of it, would present a major obstacle to life. Furthermore, each of these candidates have no atmosphere at all meaning artificial alternatives will need to be sought.

We can take it as read that for life to exist on these dwarf planets they would need a huge influx of oxygen to become sustainable. No easy feat but a necessary one.

Terraforming Pluto

Image via NASA / Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Oh Pluto, our dear old friend who was rudely ousted from our collection of planets in the solar system by the International Astronomical Union not too many years ago. Even a display of its love for us, with its heart shaped land mass seen by New Horizons, wasn’t enough to bring its status of planet back.

Pluto, whilst lacking atmosphere, does have both nitrogen and methane trapped in its ice. One potential terraforming solution is to melt then evaporate this ice to create an atmosphere that would then leave a rocky surface. The main issue with this, and the other dwarf planets, is that this atmosphere would simply move on from the planet thanks to the lack of gravity and magnetic fields.

Terraforming Charon and Ceres

Image via NASA / Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Interestingly, Charon and Ceres present somewhat easier terraforming prospects than Pluto. Charon and Ceres, rather than methane and nitrogen, both have an abundance of water-based ice which could be melted to create oceans which could then support floating continents. The continents could then be covered with plant life to help support the atmosphere and create a readily available supply of oxygen. Once again, the atmosphere would need to be artificially enclosed in order to prevent it escaping deep into space.

Terraforming Eris

Image via NASA / JPL-Caltech

Eris’ makeup presents something of a combination of the two examples above. Whilst it would end up becoming a water world after the ice has been melted, much of the ice is methane based which would create a somewhat toxic atmosphere. External supplies of oxygen would need to be delivered.

Issues with Terraforming Dwarf Planets

When working on the terraforming of dwarf planets, humans will face a number of interesting challenges which other planets might not present. Firstly, we’ve discussed above the need to enclose an atmosphere to prevent it escaping. Whilst, theoretically, this is possible using a huge dome like enclosure it creates an issue when one goes to leave the planet. To maintain atmospheric integrity, a simple gate wouldn’t be possible. Instead, it’s more likely huge airlocks would exist at each pole.

Avoiding complete catastrophe thanks to asteroid impacts is another issue. Firstly, because an asteroid style impact would destroy any dome in place but also because it would be very difficult to predict potential strikes. The orbits of these dwarf planets are so huge that they regularly pass through deadly radiation fields, are open to solar winds and wandering asteroids.

 All in all, when it comes to terraforming for human life, the dwarf planets don’t present likely options. Interesting in theory, but unlikely in practice.

Want to try terraforming these Dwarf planets for yourself? Download TerraGenesis today!

Terraforming Candidates in Jupiter’s Orbit

Image via  NASA / JPL

What would terraforming look like for candidates in Jupiter’s orbit?

Terraforming the moons in Jupiter’s orbit is a topic that has captured both scientists and writer’s imaginations alike. Since the Arthur C Clarke novel 2010: Odyssey Two the moons orbiting Jupiter have been seen as terraforming candidates. Is this feasible or is it truly only the stuff of science fiction?

Terraforming Ganymede

Image via NASA / JPL

The largest of not only Jupiter’s moons but also the largest moon in the Solar System. No wonder that Ganymede is a popular terraforming prospect. It’s roughly the size of Mercury but with a lesser mass, plus scientists believe that there may be liquid water held beneath the surface. This makes for a relatively straightforward terraforming process, with the introduction of greenhouse gases (from nearby Io) and the use of the strong magnetosphere which should sustain an atmosphere.

That said, the size of Ganymede just might not be large enough to have the gravitational pull to keep that atmosphere in place. Plus, in its current rotation a day lasts for 3.5 days on Earth. In order to make life sustainable that would need to be decreased. A challenging prospect but one specked with possibilities.

Terraforming Europa

Image via NASA / JPL

The current icy gem of Jupiter’s moons. Whilst, on the surface of it, Europa looks like a good prospect for terraforming (plentiful ice, decent relative size) there are some major headaches that come with the process.

Europa is a hugely powerful radiation belt from Jupiter which makes sustaining life on it very impractical. One option to counter this could be building huge radiation shields, but a more likely outcome would be to create a magnetic field around the moon that would deflect the harmful radiation. Furthermore, similar to Ganymede, the rotation would need to be sped up from 1.78 Earth days to 24 hours. This could be done through asteroid impact, which would also benefit the terraforming process by introducing extra heat.

As mentioned above, the moon has a huge abundance of ice, which when melted after a new atmosphere is introduced, would essentially flood the majority of the surface. This means humans would have to build floating cities or form continents from imported material. 

Terraforming Io

Image via  NASA / JPL/University of Arizona

Probably the hardest and most inhospitable candidate of Jupiter’s moons. A whole terraforming process would be incredibly difficult but smaller scale colonies present a more realistic chance. Io resides in the radiation belt, similar to Europa, so would need either shields or a magnetosphere put in place.

The payoff is the vast geothermal energy that can be harvested from under Io’s surface. That said, the volatile nature of the moon makes it a dangerous proposition. The geothermal energy would certainly be attractive this far from the Sun, especially because solar energy would be far less efficient. 

Overall, Io doesn’t win the prize for being the most attractive, straightforward or useful terraforming candidate of Jupiter’s moons.

Terraforming Callisto

Image via NASA / JPL

The last of Jupiter’s moons and the second largest of the Galileans, Callisto is roughly 99% the size of Mercury but with a substantially smaller mass. Callisto makes for one of the most attractive propositions when it comes to terraforming. Much like some other candidates there is an abundance of water (ice) on the surface but, unlike the others, it is at a far greater distance from Jupiter. This means that the radiation belt, that affects the others, presents a far smaller problem. 

As with all these candidates, due to the vast distance between them and the Sun, a process of heating would need to be applied to Callisto in order to melt the surface ice and also sustain life on the surface with a stable atmosphere.

Are Any of the Candidates in Jupiter’s Orbit Good for Terraforming?

Overall? Probably not. Realistically, they would take up a vast amount of time, effort and resources to even get to the most basic levels of life sustaining terraforming. Instead, chances are we would use these moons as resource bases and harvest their natural materials during the terraforming of other, more suitable candidates. 

Feature Image via NASA / JPL/University of Arizona

Want to try terraforming Uranus’ moons for yourself? Download TerraGenesis today!

Terraforming Candidates in Uranus’ Orbit

What would terraforming look like for candidates in Uranus’ orbit?

Graphic of Uranus planet
Image via  NASA / JPL-Caltech

Journeying to the edge of our Solar System isn’t going to be taken lightly, so could we lighten these epic journeys by finding some terraforming candidates in Uranus’ orbit? By creating habitable worlds near the edge of our Solar System we’d be able to launch into far deeper realms of space, enable vital refueling and restocking of expeditions and ease the strain on other colonized worlds. 

But is this even remotely possible? Can we even consider terraforming any of the Uranian moons? Well, there are 6 potential candidates orbiting Uranus; Miranda, Ariel, Umbriel, Titania, and Oberon. Plus, Uranus has Puck. Puck doesn’t get included in the first list because of its irregular shape.

Terraforming Miranda

Photo of Miranda Moon - Uranus
Image via NASA / JPL-Caltech

Starting at the smaller end of the moons by diameter (not including Puck), we have Miranda. Miranda holds claim of being one of the smallest spherical, orbiting objects in our Solar System, second only to Mimas (the death star lookalike moon of Saturn). Miranda doesn’t win any immediate prizes for terraforming candidacy thanks to its tiny size relative to Earth (at only 0.81%) but that doesn’t exclude it from use completely. 

Rather than becoming a wholly colonized body, humans could look to Miranda for farming or resource stocking. Thanks to its close proximity to Uranus itself, should we create gas farming stations in the atmosphere of the planet, Miranda could be used as resupply or rest station.

Terraforming Ariel

Photo of Ariel Moon - Uranus
Image via NASA / JPL

Ariel steps things up considerably in size (relatively) and is well over twice the size of the smallest moon, Miranda. But, that said, it is still only 2.64% the size of Earth with a diameter of a mere 719 miles. Once again, the small size likely excludes it from a permanent terraforming project but, similar to Miranda, Ariel does have a strong resource base. The crust and mantle of the moon has healthy reserves of water (ice) and natural gases which could be mined. Long term terraforming for Ariel? Likely not.

Terraforming Umbriel

Photo of Umbriel Moon - Uranus
Image via NASA / JPL

Umbriel presents a serious challenge. When compared to the nearby candidates in the Uranian system, it might not be a first choice, but then where’s the fun in taking the easy route? Its size isn’t one of the largest in the area, it has an unhelpful composition in terms of chemicals and makeup, plus it is far less dense. Umbriel, I’m afraid you’re not about to be our first choice. One for the hardcore terraformers.

Terraforming Titania

Photo of Titania Moon
Image via NASA / JPL

Now we’re talking. Titania holds the prize for being the largest of the moons in orbit around Uranus, but still is nothing in comparison to Earth. That said, where Titania shines is the distance that it stands from Uranus itself whilst holding orbit. This might not sound like a big selling point, but it means that it faces considerably less radiation damage from its mother planet, making it far more habitable. Titania would likely act as something of a training camp to allow humans to acclimatize to life this far from the sun before heading deeper into space. 

Terraforming Oberon

Photo of Oberon Moon
Image via NASA / JPL

Similar to Titania but smaller in size, Oberon presents itself as a better potential candidate for terraforming. It is composed of ice and rock which lends itself to terraforming practically and provides a potential water source. That said, at this distance from the sun combined with the fact that it is a the very edge of a reasonable orbit from Uranus. Oberon would require a great deal of heating and introduction of greenhouse gases to bring it into the realm of terraforming.

But what about Puck, we hear you cry.

Puck is generally referred to as “approximately spherical” which isn’t ideal for terraforming as it would be wildly unpredictable in both orbit and rotation. It is as close as it gets to Uranus which means a huge amount of radiation, plus it is completely pocketed with impact craters. Impact craters means impacts, and going through the efforts of terraforming for it to be wiped out shortly after isn’t a positive indicator.

So, no Puck, you’re not in our terraforming candidates in Uranus’ orbit. 

Want to try terraforming Uranus’ moons for yourself? Download TerraGenesis today!